MODELOWANIE I BADANIA
WYTRZYMALOWIOWE GRZĄDZIELI
W PŁUGU DŁUTOWYM

Sebastian Garus1a, Wojciech Sochacki1b

1aInstytut Mechaniki i Podstaw Konstrukcji Maszyn, Politechnika Częstochowska
1bgarisg@gmail.com, wsochacki@imipkm.pcz.pl

Streszczenie
Zadaniem pluga długotowego (głębosa, pogłębaczca) w nowoczesnym rolnictwie jest głębokie spulchnianie gleby, dzięki czemu poprawia się jej przesuszczalność, ukorzenienie roślin, niwelowane są zastoyny oraz przerwana zostaje podeszwa płuża, co pozwala na ograniczenie czasu i kosztów stosowanych zabiegów. Głównym elementem roboczym pluga jest ząb złożony z dłuta, grządziel, podcinaczy i uchwytu. W trakcie pracy elementem przenoszącym największe obciążenia jest grządziel. Modelowanie i badania przeprowadzone w pracy polegały na dobrze optymalnym kształcie grządzieli pluga długotowego. W ramach przeprowadzonej analizy wariantowej przyjęto jako cel minimalną masę badanego obiektu, przy której grządzie jest w stanie przenieść obciążenia wynikające z pracy pluga długotowego. Rozważania przeprowadzono dla grządzieli pracującej w glebie na głębokości 50 cm.

Słowa kluczowe: plug długotowy, obliczenia wytrzymałościowe, optymalizacja, redukcja masy

MODELING AND STRENGTH TESTS OF LEG
IN THE SUBSOILER

Summary
The subsoilers task in modern agriculture is deep soil loosening, resulting in improved its permeability, better rooting of and plow sole is interrupted which leads to reduce the time and costs of the treatments. The main working element is a tine composed of point, leg, wings and a handle. During work, the element that carries the highest loads is the leg. Modeling and research carried out in the work consisted in the selection of the optimal shape of the subsoilers leg. In the optimization process, the minimum mass of the tested object was assumed as the target, at which the leg is able to transfer the loads resulting from the work of the subsoiler. The considerations were carried out for the leg working in the soil at a depth of 50 cm.

Keywords: subsoiler, strength analysis, optimization, mass reduction

1. WSTĘP

W nowoczesnych technologiiach uprawy bezorkowej, jak również na ziemiach uprawianych tradycyjnie, niezwykle istotne jest, gdy zagęszczony, występujący na naturalnych granicach warstw, poziom glebowy zostanie przewany. Gdy głębokie warstwy gleby są intensywnie spulchniane, następuje jednoczesne mieszanie i rozdrabnianie warstwy ornej. Uzyskiwane jest ono dzięki agregoewnemu ustawieniu zębów. Zabieg taki w znaczący sposób powoduje zwiększenie porowatości, polepszę całkowity bilans wodny oraz jej przesiąkanie, poprawia wymianę tlenu i oddychanie gleby. Następuje szybkie uniesienie i spulchnienie podłoża, a po użyciu narzędzia niszczona jest podeszwa płuża [1, 6]. Skutkiem tego jest szybszy wzrost roślin i ożywienie całej gleby, a jednocześnie chwasty korzeniowe (np. perz, oset) są zwalczane w sposób efektywny. Urządzenie pozwalające na wykonanie tego typu zabiegu agrotechnicznego nazywane jest plugiem długotowym, głęboszem lub pogłębaczem [4]. Wśród szerokiej oferty producentów z całego świata na uwagę zasługuje rozwiązanie firmy Vogel&Noot (rys. 1).
Pozwala ono na pracę na głębokości do 55 cm przy maksymalnym deklarowanym przez producenta zapotrzebowaniu na moc ciągnika 184 kW (250 KM).

Rys. 1. Pług długotw TerraDig XS/7 firmy Vogel&Noot [5]

Masa bez wału dla wersji XS/7 pokazanej na rys. 1 wynosi 1375 kg, natomiast w zależności od zastosowanego wału wynosi od 1815 kg do 2005 kg. Duża głębokość pracy w porównaniu do innych narzędzi agrotechnicznych wraz ze znaczną masą powoduje wysokie zapotrzebowanie mocy jak na maszynę o szerokości roboczej równej 3 m. Zasadnicze jest możliwie największe zmniejszenie masy maszyny przy jednoczesnym zachowaniu odpowiedniej do danego rodzaju pracy wytrzymałości. Głownym elementem roboczym w maszynie jest żebę pokazany na rys. 2. Najbardziej przenoszącym obciążeniem elementem żebra jest grąździe (rys. 3). Jest to detal o masie 33,87 kg wykonany z arkusza stali S355 (parametry materiałowe wykorzystane do symulacji zebrano w tabeli 1) o grubości 35 mm wyciętej palnikiem gazowym lub wodą, ponieważ inne techniki cięcia powodują powstanie skosów lub nie są w stanie przeciąć blachy o tej grubości.

Rys. 2. Żeb pługa długotwego zbudowany z dłuta (1), grądzieli (2), podcinaczy (3), uchwytu (4), noża (5), śruby zabezpieczającej M16 12.9

Rys. 3. Geometria grądzieli przed optymalizacją. Otwory mocujące: śrubę zabezpieczającą (1), os obrotu (2), noża (3), podcinacze w zależności od ustawionej głębokości roboczej (4), mocowanie dłuta (5)

Tabela 1. Parametry dla stali S355 przyjęte do symulacji [3]

<table>
<thead>
<tr>
<th>Parametr</th>
<th>Wartość</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typ materiału</td>
<td>Izotropowy</td>
</tr>
<tr>
<td>Moduł Younga</td>
<td>210 GPa</td>
</tr>
<tr>
<td>Współczynnik Poissona</td>
<td>0,3</td>
</tr>
<tr>
<td>Moduł Kirchhoffa</td>
<td>81 GPa</td>
</tr>
<tr>
<td>Gęstość</td>
<td>7850 kg/m³</td>
</tr>
<tr>
<td>Granica plastyczności</td>
<td>355 MPa</td>
</tr>
<tr>
<td>Wytrzymałość na rozciąganie</td>
<td>510 MPa</td>
</tr>
</tbody>
</table>

Celem pracy jest także określenie geometrii grądzieli, aby spowodować optymalną w stosunku do naprężeń dopuszczalnych redukcję masy. Aby to osiągnąć, skorzystano z oprogramowania Inventor. Sprawdzenie konstrukcji w ramach obliczeń wytrzymałościowych wykonano dla reprezentatywnych obciążeń eksploatacyjnych.

2. BADANIA WŁASNE

W programie Inventor wykonany został model brylowy grądzieli omawianego urządzenia. Następnie skorzystano z narzędzia Generator kształtów, które, na podstawie podanych wiązań, pozwala, dzięki inteligentnej strategii maksymalizowania sztywności części zaproponować geometrię o określonym pewnym procencie ubytku masy. Posiadając brylowy wstępny model części (w analizowanym przypadku geometrią grądzieli), należy określić strefy, które nie zostaną zmodyfikowane w trakcie tworzenia kształtu odniesienia. Strefy te powinny współgrać z otworami montażowymi niezbędnego osprzętu (rys. 3); pokazano je na rys. 4a. Dla otworów pod śruby M27 (rys. 3 pkt. 2) określono zachowywaną strefę o promieniu 25 mm. Odpowiednio dla otworów pod śruby
M14 (rys. 3 pkt. 4) i M12 (rys. 3 pkt. 3 i 5) promień zachowujących strefy wynosiły 14 mm i 12 mm.

Rys. 4. Zachowywane strefy (a) oraz propozycja zmiany geometrii detalu wygenerowana z użyciem generatora kształtów w zakresie ubytku masy od 10% do 40% z gradacją co 5% (b)

Rzeczywiste obciążenie w trakcie pracy na średniej ciężkości glebach (określone według danych udostępnionych przez producentów) wynosi około 12 kN, lecz w razie natarcia na przeszkodę stałą (np. kamienie) może wynieść do 40kN i ten przypadek jest analizowany w obliczeniach w niniejszej pracy. Wiązania sworznia zostały użyte dla powierzchni walowych pokazanych w punktach 1 i 2 na rys. 3. Następnie model został dyskretyzowany na 375793 elementy skończone o topologii typu TETRA z sumaryczną liczbą 542285 węzłów. Aby uzyskać dobrą jakość siatki, była ona zagęszczana, aż do uzyskania stabilnych wyników. W ramach rozpatrywanego przypadku otrzymano propozycje zmiany geometrii detalu dla zakresu ubytku masy od 10 do 40 procent z gradacją co 5%. Nałożone na siebie wyniki obliczeń zostały przedstawione na rys. 4b. Pozwoliło to na opracowanie modelu sparastrowanej części wykorzystywanej w trakcie analizy MES procesu analizy warianto wej.

Rys. 5. Rozkład naprężeń zredukowanych według hipotezy Hubera-Misesa dla modelu bazowego grzędzi przy standardowych obciążeniach 12 kN (a) oraz dla maksymalnych obciążen powodujących zerwanie śruby zabezpieczającej 40 kN (b)

Dla spawalnej stali stopowej o podwyższonej wytrzymałości S355 wartość minimalnej granicy plastyczności wynosi 355 MPa, co, po przyjęciu współczynnika bezpieczeństwa równego 2,6, daje wartość dopuszczalnych naprężeń zredukowanych Hubera-Misesa wynoszącej 177,5 MPa, których nieprzekroczenie zostało przyjęte jako kryterium wytrzymałościowe.

Na rys. 5 przedstawiono rozkład naprężeń zredukowanych według hipotezy Hubera-Misesa dla modelu bazowego grzędzi przy trzech różnych obciążeniach. W trakcie pracy urządzenia na polu przyjęto obciążenie rzędu 12 kN (rys 5a). Zostało ono wyznaczone między innymi z maksymalnego zapotrzebowania na moc ciągu dla tego urządzenia deklarowanego przez producenta, szerokości roboczej maszyny, liczby zębów oraz wydajności. W omawianym pługu długotowym zęby w trakcie pracy są zabezpieczone śrubą zabezpieczającą M16 o klasie 12.9 (rys. 2), co pozwala określić maksymalną rzeczywistą siłę powodującą zerwanie śruby na 40 kN (rys 5b). Obciążenie w analizowanych przypadkach było rozłożone na powierzchnię roboczą, a siła miała ten sam kierunek co prędkość maszyny i przeciwny zwrot. W każdym z przedstawionych przypadków występowały
lokalne centra naprężeń (osłabień) związane z lokalizacją powierzchni nierównoczną w symulacji. Jak pokazano na rys. 5, dla obciążenia wynikającego z ciągłej pracy (12 kN) naprężenia nie stanowią nawet 25% granicy plastyczności. W przypadku chwilowych naprężeń (40 kN) występujących w sytuacji zerwania śruby zabezpieczającej zostaje nieznacznie przekroczona granica wyznaczona przez współczynnik bezpieczeństwa.

Rys. 6. Model bazowy grządzieli (a), minimalne rozmieszczenie otworów dla \(t = 0 \) (b), maksymalne rozmieszczenie otworów dla \(t = 1 \) (c).

Modele optymalizacyjne, tworzone na potrzeby prac konstrukcyjnych, pozwalają na przeprowadzenie procesu optymalizacji, poprzez który możliwe jest otrzymanie najbardziej pożądanego rezultatu na podstawie serii przeprowadzonych badań. Zbiór zmienny, pozwalający opisać obiekt, jego stan i relacje między nimi, tworzyć matematyczny model optymalizacyjny. Składają się na niego zmienne ze zbioru parametrów nieulegające zmianom (podzbiór \(P \)) oraz zmienne posiadające różną wartość w kolejnych krokach procesu optymalizacji (podzbiór \(X \)), zwanych zmiennymi decyzyjnymi. Wybierając element ze zbioru decyzji dopuszczalnych \(\Omega \), będącego podbiorem determinowanej warunkami ograniczającymi przestrzeni zmiennych decyzyjnych, przyjęto kryterium optymalizacji (wartość funkcji celu \(f(X,P) \)) pozwalające na określenie rozwiązania najbardziej pożądanego [2].

Kryterium optymalizacji określa się jako:

$$ f(X,P) = \text{optimum} \quad X \in \Omega $$

W przypadku trudnych do rozwiązania optymalizacji wielokryterialnych (gdy występuje więcej niż jedna funkcja celu) zagadnienie optymalizacyjne upraszcza się, wybierając funkcję celu determinowaną kryterium najistotniejszym z praktycznego punktu widzenia, a pozostałe kryteria traktuje się jako tzw. ograniczenia [2]. Bardzo zbliżonym do optymalizacji, wykorzystanym w tej pracy, jest proces analizy wariantowej, pozwalający dla danego zbioru parametrów na określenie najbardziej optymalnego rozwiązania.

Bazując na danych wyjściowych narzędzia Generator kształtów programu Inventor (rys. 4b), opracowano optymalizacyjny model parametryczny części w zależności od parametru \(t \). Rys. 6a przedstawia model bazowy – 33,8733 kg. Na rys. 6b pokazano minimalne wielkości otworów w najmniejszym stopniu zmniejszające masę detalu do 32,7991 kg, natomiast rys. 6c przedstawia największy ubytek masy związany z rozmiaarami otworów, masa detalu w tym przypadku wynosi 23,7052 kg, co stanowi około 70 procent detalu bazowego. Rozkład masy detalu w zależności od parametru \(t \) przedstawia rys. 8. Parametr \(t \) przedstawia liniowe przesunięcia wszystkich ścian otworów z poleżeń określonych na rys. 6b dla \(t = 0 \) (0%) do położeń przedstawionych na rys. 6c dla \(t = 1 \) (100% przesunięcia).
Rys. 7. Rozkład naprężeń zredukowanych według hipotezy Hubera-Misesa dla optymalizacyjnego modelu parametrycznego części w zależności od parametru t (na wszystkich rysunkach została zachowana ta sama skala)

Rys. 8. Rozkład masy analizowanych modeli w zależności od parametru t

Rys. 9. Rozkład maksymalnych znormalizowanych naprężeń zredukowanych według hipotezy Hubera-Misesa w funkcji masy detalu dla zadanych wartości parametru t, którego wartość podano zamiast punktów pomiarowych
Rys. 10. Rozkład maksymalnych znormalizowanych naprężeń zrzedkowanych według hipotezy Hubera-Misesa w zależności od parametru \(t \)

Na rys. 7 przedstawiono rokład naprężeń zrzedkowanych według hipotezy Hubera-Misesa dla kolejnych kroków parametru \(t \). Na wszystkich diagramach zastosowano tę samą skalę, gdzie kolor czarny oznacza osiągnięcie granicy plastyczności wykorzystywanego materiału, a obciążenie wynosiło 40 kN i przyłożone było do powierzchni stycznej do dłuta. Wszelkie kąty wewnętrzne w symulacji zaokrąglono promieniem 4 mm w celu minimalizacji naprężeń na ostrzach krawędzi otworów.

Rys. 11. Rozkład naprężeń zrzedkowanych według hipotezy Hubera-Misesa dla opracowanego modelu optymalnego grądzeli przy obciążeniach rzedu 40 kN

Rys. 12. Rozkład współczynnika bezpieczeństwa dla opracowanego modelu optymalnego grądzeli przy obciążeniach rzedu 40 kN

Korzystając z wykresu fazowego (rys. 9) przedstawiającego rokład maksymalnych znormalizowanych naprężeń zrzedkowanych według hipotezy Hubera-Misesa od masy detalu, można zauważyć, że najbardziej optymalna relacja redukcji naprężeń i masy występuje dla wartości parametru \(t \) równej 0.95. Mimo że, jak można zauważyć na rys. 10, z zakresu znormalizowanych naprężeń zrzedkowanych według hipotezy Hubera-Misesa dla kolejnych kroków procesu optymalizacji, największa redukcja naprężeń występuje dla parametrów \(t \) równych 0.95 i 0.85 i wynosi odpowiednio 79,1% i 78,8% naprężeń maksymalnych występujących w symulacji.

Korzystając z otrzymanych wyników, opracowano model grądzeli na podstawie symulacji charakteryzującej się największą redukcją naprężeń i masy, wprowadzając poprawki tak, aby w jeszcze większym stopniu zrzedkować naprężenia i poprawić estetykę wykonania detalu kosztem niewielkiego wzrostu masy. Ostateczna masa detalu to 24,314 Kg. Efekt ten uzyskano poprzez zastosowanie innych zakresów zaokrąglenia otworów, a detali wyjściowy przedstawiono wraz z wyznaczonymi naprężeńiami zrzedkowanymi według hipotezy Hubera-Misesa na rys. 11 dla obciążenia 40 kN. Rys. 12 przedstawia współczynnik bezpieczeństwa zaprojektowanego detalu wykonanego ze stali o granicy plastyczności 355 MPa.

3. PODSUMOWANIE

Celem pracy była taka zmiana geometrii detalu, a co za tym idzie redukcja masy grądzeli pluga dłutowego, aby przy możliwie najniższej masie naprężeń dopuszczalnych nie spowodowały przekroczenia dopuszczalnej wartości. Obliczenia wytrzymałościowe wykonano dla reprezentatywnych obciążeń eksploatacyjnych.

Praca została wykonana przy użyciu programu Inventor. Korzystając z narzędzia generatora kształtów, określono zarys geometrii możliwej do zmiany. Po przeprowadzeniu badań wytrzymałościowych modelu bazowego zaprojektowano optymalizacyjny model parametryczny części, który po określeniu funkcji celu poddano procesowi analizy. Uzyskane wyniki pozwoliły na określenie parametrów optymalnych, a następnie na opracowanie projektu grądzeli o pożądanych właściwościach z jednoczesnym uwzględnieniem estetyki, jakże istotnej dla projektów przemysłowych. Redukcja masy wyniosła ponad 28% w stosunku do detalu bazowego przy zachowaniu zakładanych wartościach współczynnika bezpieczeństwa. Dalsza analiza kolejnych podzespółów
maszyny mogłyby spowodować znaczną redukcję masy bez straty właściwości wytrzymałościowych, co z kolei wpłynęło na znaczne ograniczenie kosztów eksploatacyjnych. Następnie należy przeprowadzić analizę kosztów procesu cięcia w stosunku do korzyści wynikających z redukcji masy, co pozwoli na określenie racjonalności ekonomicznej wprowadzonego ulepszenia.

Literatura

Artykuł dostępny na podstawie licencji Creative Commons Uznanie autorstwa 3.0 Polska. http://creativecommons.org/licenses/by/3.0/pl